Archive | Hard Drives

Hard Drive Performance Comparison

I have had many people ask me what is the difference between the Seagate ST31000528AS hard drive and the Seagate ST31000524AS hard drive.

The only real difference is performance.
They are both considered high quality hard drives.

He is a simple comparison:

Seagate ST31000528AS
Series Barracuda
Interface SATA 3.0Gb/s
Capacity 1TB
RPM 7200
Cache 32MB
Average Latency 4.16ms
Form Factor 3.5 inches

VS

Seagate ST31000524AS
Series Barracuda
Interface SATA 6.0Gb/s
Capacity 1TB
RPM 7200
Cache 32MB
Average Latency 4.16ms
Form Factor 3.5 inches

So the only real difference between the two Seagate Barracuda hard drives is the Seagate ST31000528AS has a read / write speed of 3.0Gb/s while the Seagate ST31000524AS has a read / write speed of 6.0Gb/s.

Obviously I would prefer the faster hard-drive but both are high quality and reliable hard drives.

 

 

Posted in Computers, Data Storage, Hard Drives, Hardware0 Comments

4 steps to preventing server downtime

Eliminating potential single points of failure is a time-tested strategy for reducing the
risk of downtime and data loss. Typically, network administrators or computer consultants do this by introducing redundancy in the application delivery infrastructure, and automating the process of monitoring and
correcting faults to ensure rapid response to problems as they arise. Most leading
companies adopting best practices for protecting critical applications and data also
look at the potential for the failure of an entire site, establishing redundant systems at
an alternative site to protect against site-wise disasters.

STEP #1 – PROTECT AGAINST SERVER FAILURES WITH QUALITY….don’t be a cheapskate with your own business by using low quality CHEAPO server and network hardware. Use HIGH Quality hardware.

HARDWARE AND COMPONENT REDUNDANCY
Unplanned downtime can be caused by a number of different events, including:
• Catastrophic server failures caused by memory, processor or motherboard
failures

Server component failures including power supplies, fans, internal disks,
disk controllers, host bus adapters and network adapters
Server core components include power supplies, fans, memory, CPUs and main logic
boards. Purchasing robust, name brand servers, performing recommended
preventative maintenance, and monitoring server errors for signs of future problems
can all help reduce the chances of automation downtime due to catastrophic server
failure.

You can reduce downtime caused by server component failures by adding
redundancy at the component level. Examples are: redundant power and cooling,
ECC memory, with the ability to correct single-bit memory errors, and combining
Ethernet cards with RAID.

STEP #2 – PROTECT AGAINST STORAGE FAILURES WITH
STORAGE DEVICE REDUNDANCY AND RAID

Storage protection relies on device redundancy combined with RAID storage
algorithms to protect data access and data integrity from hardware failures. There are
distinct issues for both local disk storage and for shared, network storage.

For local storage, it is quite easy to add extra disks configured with RAID protection.
A second disk controller is also required to prevent the controller itself from being a
single point of failure.

Access to shared storage relies on either a fibre channel or Ethernet storage network.
To assure uninterrupted access to shared storage, these networks must be designed
to eliminate all single points of failure. This requires redundancy of network paths,
network switches, and network connections to each storage array.

STEP #3 – PROTECT AGAINST NETWORK FAILURES WITH
REDUNDANT NETWORK PATHS, SWITCHES AND ROUTERS

The network infrastructure itself must be fault-tolerant, consisting of redundant
network paths, switches, routers and other network elements. Server connections can
also be duplicated to eliminate fail-overs caused by the failure of a single server or
network component.

Take care to ensure that the physical network hardware does not share common
components. For example, dual-ported network cards share common hardware logic,
and a single card failure can disable both ports. Full redundancy requires either two separate adapters or the combination of a built-in network port along with a separate network adapter.

STEP #4 – PROTECT AGAINST SITE FAILURES WITH DATA
REPLICATION TO ANOTHER SITE

The reasons for site failures can range from an air conditioning failure or leaking roof
that affects a single building, a power failure that affects a limited local area, or a
major hurricane that affects a large geographic area. Site disruptions can last
anywhere from a few hours to days or even weeks.

There are two methods for dealing with site disasters. One method is to tightly couple
redundant servers across high speed/low latency links, to provide zero data-loss and
zero downtime. The other method is to loosely couple redundant servers over
medium speed/higher latency/greater distance lines, to provide a disaster recovery
(DR) capability where a remote server can be restarted with a copy of the application
database missing only the last few updates. In the latter case, asynchronous data
replication is used to keep a backup copy of the data.
Combining data replication with error detection and fail over tools can help to get a
disaster recovery site up and running in minutes or hours, rather than days.

Posted in Computer Repair, Computers, Data Backups, Data Storage, Hard Drives, Hardware, High Availability, How To's, RAID Levels, Servers0 Comments

SOURCES OF SERVER AND NETWORK DOWNTIME

Unplanned server and network downtime can be caused by a number of different events:

• Catastrophic server failures caused by memory, processor or motherboard
failures

• Server component failures including power supplies, fans, internal disks,
disk controllers, host bus adapters and network adapters

• Software failures of the operating system, middleware or application

• Site problems such as power failures, network disruptions, fire, flooding or
natural disasters

To protect critical applications from downtime, you need to take steps to protect
against each potential source of downtime.

Eliminating potential single points of failure is a time-tested technical strategy for reducing the
risk of downtime and data loss. Typically, network administrators do this by introducing redundancy in
the application delivery infrastructure, and automating the process of monitoring and
correcting faults to ensure rapid response to problems as they arise. Most leading
companies adopting best practices for protecting critical applications and data also
look at the potential for the failure of an entire site, establishing redundant systems at
an alternative site to protect against site-wide disasters.

Posted in Computer Repair, Computers, Data Backups, Data Recovery, Data Storage, Hard Drives, High Availability, Memory, Motherboards, Networking, Servers0 Comments

The Definition of RAID and the Most Common RAID Levels Explained

RAID stands for Redundant Array of Inexpensive (or Independent) Disks.

I prefer to call them Redundant Array of Independent disks because they use to be very expensive.

A RAID array is a set of multiple hard drives that make up a data storage system built for redundancy or business continuity. In most but not all configurations a RAID storage system can tolerate the failure of a hard drive without losing data however this ultimately depends on how the RAID array is configured.

Different RAID Levels and Their Common Uses

Each RAID level have pro’s and con’s and it is up to a network administrator to decide which RAID level is best for a specific situation. There are many factors to be taken into consideration and it boils down to Speed – performance and budget.

Here are some examples of some of some common RAID configurations or RAID levels.

RAID Level 0

RAID Level 0 provides no redundancy whatsoever and is completely foolish to use in a business environment for storing critical data. With a RAID 0 configuration if one hard drive dies the entire RAID array dies and you can kiss all of data on the RAID array goodbye when this happens. RAID 0 is usually popular with computer video gamers that only take performance into consideration and RAID 0 is usually twice as fast as other RAID levels. Re read this paragraph before considering using RAID 0 it to store your precious data. RAID Level 0 splits or stripes the data across drives, resulting in higher data throughput. Since no redundant information is stored, performance is very good, but the failure of any disk in the array results in total and complete data loss. Raid Level 0 is only used to increase hard drive performance.  A RAID 0 configuration uses 2 hard drives and you get the storage capacity of both of the hard drives. Example if you have 2 100 gig hard drives then you get 200 gigs of NON redundant storage space.

RAID Level 1

RAID Level 1 is usually referred to as hard drive mirroring AKA a mirror. A Level 1 RAID array provides redundancy by duplicating all the data from one drive on a second drive so that if one of the two hard drives drive fails, no data is lost. RAID 1 is very good for small businesses because it is affordable and reliable. A RAID 1 configuration uses 2 hard drives so if you have 2 identical hard drives you get the storage capacity of 1 of those hard drives. Example if you have a pair of 100 gig hard drives then you get 100 gigs of redundant storage space.

RAID Level 5

RAID Level 5 stripes data at a block level across several drives and distributes parity among the drives. No single disk is devoted to parity. This can speed small writes in multiprocessing systems. Because parity data is distributed on each drive, read performance tends to be lower than other RAID types.

The actual amount of available storage is about 70% to 80% of the total storage in the disk array. The storage penalty for redundancy is only about 20% to 30% of the total storage in the RAID 5 array. If one disk fails it is possible to rebuild the complete data set so that no data is lost. If more than one drive fails all the stored data will be lost. This gives a fairly low cost per megabyte while still retaining redundancy.
A RAID 5 configuration uses 3 or more hard drives. If you have for the sake of an example, 3 100 gig hard drives then you get approximately 200 gigs of actual storage capacity.

RAID 1+10

Raid 1+10 is commonly known as RAID 10 and is a combination of RAID 0 and RAID 1 – mirroring. What this means is you have 4 hard drives, 2 sets of the hard drives are each on a RAID 0 configuration and are then mirrored together on a RAID 1 configuration. Data is striped across the data mirror which provides both high performance and redundancy together. Any one of the hard drives can fail without data loss as long as the data mirror is not damaged. The RAID 10 array offers both high speed data transfer (write speed) advantages of striped arrays and increased data accessibility (read speed). System performance during a RAID rebuild drive is also better than that of parity based arrays, since data does not need to be regenerated from parity information, but is copied from the mirrored hard drive to another.

Now that you know what RAID is and what common RAID levels are used today never ever assume a RAID system is a backup solution because it is not. An Orlando computer consultant can help you decide which RAID level is best for your business or organization. Don’t ever just blindly purchase a server without the guidance of a professional network administrator. Without professional guidance you may go overboard and waste money on a RAID system that you don’t really need or you may wind up getting a RAID system that offers no data protection at all.

Posted in Computers, Data Storage, Hard Drives, Hardware, RAID Levels, What is?0 Comments

Orlando Computer Repair Company Talks About Hard Drive Clicking

Hard drive clicking also known as the click of death.

What does it mean when your hard drive makes a clicking sound?
A clicking hard drive is a sign of physical hard drive failure.

Without getting into a bunch of technical factors here I am going to keep this post short and to the point.

When a hard drive makes a clicking sound it is damaged beyond repair and the data on it is not accessable.

This problem can happen to anybody anywhere and is more common then many people realize.

This also applies to people that use external hard drives as a backup system for their data.
HARD DRIVES FAIL…..period.

The bottom line is anything mechanical will fail and will not last forever.
This is especially true for hard drives including external hard drives.

When you hear your hard drive making a clicking noise unplug the hard drive and do not use it anymore.
You can attempt to copy your data off of the clicking hard drive but you are going to wind up causing more damage to the hard drive which will make it more expensive when a data recovery lab recovers your data.

When a hard drive clicks you will not be able to retrieve your data and you will have no choice but to send your hard drive to a data recovery company or an Orlando data recovery company if you live in Central Florida.

An Orlando Data Recovery company can get your data off of the damaged hard drive and onto a new hard drive.

Always be prepared for the worst and backup your data to a real backup system.
An external hard drive is not considered a professional backup solution and should only be used for a convience rather then a backup system.

Posted in Computer Repair, Computers, Data Recovery, Data Storage, Hard Drives0 Comments

Your server or servers are running out of storage space! What should you do?

So let’s say you’ve decided to take your business seriously and spend the money needed for a quality server. You may be using a file server to share files and printers or you may use it to run Microsoft Exchange for shared calendars or for email, host a database for your company or a CRM – Customer Relationship Management application. Perhaps you have two or three servers running a combination of these and each has its own backup system and each should.

What is likely to happen over time?

Storage inefficiency – You may find that one server, perhaps your file server, is constantly running out of storage space, while another server always seems to have too much storage space to spare, but no easy way to share it. This is a very inefficient scenario and the biggest reason why DAS solution is ultimately inefficient for growing small businesses.

Management headaches – Most DAS solutions have their own proprietary management software and interfaces and are not easy to manage remotely. You may find yourself with multiple different DAS solutions, each with its own management quirks and annoyances.

Consolidate Your Data

As with PCs, the answer to server overload is to consolidate your storage, unchain it from the server, and place it on the network where it can be shared among multiple servers and PCs. Why?

It’s efficient – You get a shared pool of networked storage that you can slice, dice, and allocate to users, applications, and servers at will. No more overloaded servers sitting next to servers with storage to spare.

It’s easy to upgrade –You no longer have to shut down your server and its applications to upgrade your storage. You can add storage to the network and make it instantly available without affecting your applications.

When it’s time to upgrade your servers, it’s no longer necessary to throw out the storage with the server or spend the time to migrate data to another server. You simply connect the new server to the network and configure it for access to your network storage. Now this isn’t always the case depending on what your server is hosting but more often than not this is a good solution to many small and medium sized businesses.

It’s cost effective – Storage makes up a significant portion of your server’s price and internal space. Separate storage on the network and you can spend fewer dollars on servers or buy more server performance and reliability for your dollar. You can also pack more servers into a smaller space, if that’s what you need to do, taking advantage of compact rack mount servers or even blade servers but don’t forget to keep your server closet or room COOL with Air Conditioning.

You have two choices for network storage: a SAN and a NAS.

SAN

Storage Area Networks (SANs) separate storage from your servers and put it on its own specialized high-performance storage network where it can be pooled and allocated to servers and applications. When a server runs out of storage, you simply allocate more storage from the SAN, rather than taking down the server to add physical storage.

NAS

Nothing beats the simplicity of NAS for fulfilling the needs of a typical small business. A NAS device sits directly on the network and, like a server, serves up files, not storage blocks. There are many advantages to NAS as a small business storage solution.

Independence – NAS devices can sit anywhere on the network, completely independent of servers, serving up files to any network connected PC’s or servers. If a server or PC goes down, the NAS is still functional. If power goes down, there’s no need for complex reconfiguration. With its simplicity, a NAS can be up and running again in minutes.

Ease of Use – NAS devices typically come as preconfigured turnkey solutions. There’s no need to install a host adapter or complex server operating system. You simply plug the NAS into the network and do some very light configuration, usually with a Web browser, and your NAS is up and running and accessible to your PCs.

Easy Upgrades – T o get more storage with NAS you simply plug in another NAS device and you’re up and running with additional file storage in minutes.

Flexibility – Today some NAS solutions also come with some built-in iSCSI capability, which can provide fast block-based storage to performance-hungry server applications that need it, while still allowing you to share and print files. In some cases you don’t even need a switch or special host adapter. You simply plug your server directly into the iSCSI port on the NAS. So you get the best of both worlds in a single easy to use and configure device.

Posted in Computer Repair, Computers, Data Storage, Hard Drives, Hardware, Servers0 Comments

How to unlock and delete hidden EISE partations on most name brand computers

Did you know almost all major computer vendors like DELL, HP, IBM, GATEWAY, ACER, ASUS, SONY, Toshiba, and other pre built computer systems or laptops come with a special and hidden EISA hard drive partition that contain a system recovery utility and or diagnostic tools to restore the computer back to its factory default out of the box configuration?

These hidden EISA partitions are not really hidden because you can see them.  These partitions are usually in the FAT or NTFS file system, you cannot assign them a drive letter, format them or even delete them like you can with other hard drive partitions. These hidden partitions usually take up several gigabytes to more than 10 gigabytes in storage space.

Here is a screen shot showing the commands I typed to delete DRIVE 2.
Notice how this hard drive has a 10 gig EISA partition.
This is 10 gigs of space I don’t want to waste so as you can see below I used the command prompt and the Microsoft hard drive partition tool called diskpart to delete this EISA partition and I will delete the other partition when I install the OS. Since I am going to reinstall the operating system clean without the garbage software major computer vendors cram on their computers. I will destroy all the partitions and install only the specific software I choose to use on this particular computer.

Here are the written step by step instructions so you can compare them to the screen shot above and understand what each command means or does. I even highlighted the commands in yellow so they are that much easier to identify.

Here are the written step by step instructions so you can compare them to the screen shot above and understand what each command means or does. I even highlighted the commands in bold so they are that much easier to identify.
1. Open the command prompt
2. Type diskpart (hit the enter button)
3. Now type list disk (hit the enter button)
4. Now type select disk 2 (hit the enter button)
5. Now type list part (hit the enter button)
6. Now type select part 1 (hit the enter button)
7. Now type delete part override (hit the enter button)
8. Now type exit

Now the EISA partition is gone and you can take advantage of the freed up hard drive space.

Posted in Computer Repair, Computers, Data Storage, Hard Drives, Hardware, How To's0 Comments


Advert